Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1218806, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37799598

RESUMO

River and reservoir bacterial communities are the most basic part of river biomes and ecosystem structure, and play an important role in river biological processes. Yet, it remains unclear how highly regulated dam reservoirs affect both soil and sediment bacterial communities. A temporal distribution pattern of bacterial communities was investigated using Illumina MiSeq sequencing in a transition section of the Three Gorges Reservoir (TGR). In total, 106,682 features belong to the bacteria kingdom, encompassing 95 phyla, 228 classes, 514 orders, 871 families, 1959 genera, and 3,053 species. With water level regulation, Shannon diversity index, and observed species differed significantly, with no significant difference in Simpson evenness. Both in the high water level period (October) and the low water level period (June), Proteobacteria, Acidobacteri, and Chloroflexi were the most abundant phyla. Whereas, based on PCA plots and Circos plot, the microbial community structure has changed significantly. LEfSe method was used to identify the classified bacterial taxa with significant abundance differences between the low water level and high water level periods. KOs (KEGG Orthology) pathway enrichment analysis were conducted to investigate functional and related metabolic pathways in groups. To some extent, it can be inferred that water level regulation affects community growth by affecting the metabolism of the microbial community.

2.
Environ Pollut ; 318: 120852, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36509346

RESUMO

Sediments are the long-term sinks of microplastics (MPs) and nutrients in freshwater ecosystems. Therefore, understanding the effect of MPs on sediment nutrients is crucial. However, few studies have discussed the effects of MPs on nitrogen and phosphorus cycles in freshwater sediments. Herein, 0.5% (w/w) polyvinyl chloride (PVC), polylactic acid (PLA), and polypropylene (PP) MPs were added to freshwater sediments to evaluate their effects on microbial communities and nitrogen and phosphorus release. The potential biochemical functions of the bacterial communities in the sediments were predicted and assessed via 16S rRNA gene sequencing. The results showed that MPs significantly affected the microbial community composition and nutrient cycling in the sediments. PVC and PP MPs can promote microbial nitrification and nitrite oxidation, while PP can significantly promote alkaline phosphatase (ALP) activity and the abundance of the phosphorus-regulation (phoR) gene. PLA MPs had the potential to promote the abundance of microbial phosphorus transporter (ugpB), nitrogen fixation (nifD, nifH, and nifX), and denitrification (nirS, napA, and norB) genes and inhibit nitrification, resulting in massive accumulation and release of ammonia nitrogen. Although PLA MPs inhibited the activity of ALP and the abundance of the organophosphorus mineralization (phoD) gene, it could enhance dissimilatory iron and sulfite reduction, which may promote the release of sedimentary phosphorus. Our findings may help understand the mechanisms of nitrogen and phosphorus cycles and microbial communities driven by MPs in sediments and provide a basis for future assessments of the environmental behavior of MPs in freshwater ecosystems.


Assuntos
Microbiota , Microplásticos , Plásticos/farmacologia , Nitrogênio/farmacologia , Fósforo , RNA Ribossômico 16S , Sedimentos Geológicos/química , Poliésteres
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...